OpenCAE富山勉強会 2014/02/08

パラメータ最適化ツール DakotaとOpenMDAOについて OpenCAE学会 SH

- Dakotaとは?
- Dakotav5.4インストール方法など -DakotaV5.4の機能追加概要
- Dakotaと各ツールとの連携
 - -Calculix連携事例 -OpenFOAM連携
- DakotaGUIツール: Jaguar について
 OpenFOAM連携でJaguarの使用例
- OpenMODについて
- OpenMODインストールメモ
- まとめ

Dakotaとは1?

Dakotaとは2?

- DAKOTAは具体的には何に使えるのか?
 - -Optimization 設計最適化: 最適寸法や最適パラメータ決定
 - -Sensitivity Analysis 感度解析: 入力パラメータ変動に対する出力感度
 - -Calibration パラメータ同定: 未知パラメータ決定(物性値同定など)
 - -Uncertainty Quantification 信頼度: 入力パラメータが変動した場合の応答 変動の確率分布推定

Temperature [deg C]

Dakotav5.4 の機能変更概要

- 信頼性評価機能の追加: New PoFDarts method
- 最適化: 直接サーチ整数最適化手法 New direct search mixed integer optimization method (NOMAD) extended Bayesian calibration methods and handling of experimental data(QUESO)
- Boostパッケージ1.49が必要

V5.4 についてそれほど大きな変更はなし

Dakota と各ツールとの連携①

- Dakotaは任意のプログラムや解析ツールと連成 する場合、スクリプトなど外部インターフェースを 使って自動実行させる。
- 幾つかのスクリプトやbinary 連携ツールが examples Directory 以下に提供されているので これを使って連携実行させる compiled interface 以下にはmatlab 以外はつかえそうもなく script_interfacesの下のサンプルを利用すること にした(V5.3~Matlab以外にOSS scalibの直接 interface が準備された)。
- ABAQUS, NASTRANなど解析ツールの他、Python script, Excel Visual Basic script と 連携する例の sample がある。

Dakota と各ツールとの連携(2)

Dakotaと解析ツールは下記のように連携ユーザは以下3つファイルを準備する必要あり。

Dakotaと各ツールとの連携③

- ・ 片持ちはりの反り計算の例題でABAQUSのSample が入っていたので、これを OSS有限要素解析ソフト Calculix で動くように書き換えて実行してみる
- 前提:Linux 環境 (Ubuntsu) Calculix linux版 install 済み
- Calculix V2.1 を使用

Dakota と各ツールとの連携5

• ②fe.inp.appの書き換え(fe.inp.appはCalculix(abaqus)の解析入力ファイルのテンプレート

{ECHO(OFF)} {include(params.in)} {ECHO(ON)} *HEADING *NODE 1, 0.0, 0.0 2, {S/4}, 0.0 3, {S/2}, 0.0 4, 0.0, {B/2} 5, {S/4}, {B/2} 6, {S/2}, {B/2} 7, 0.0, {B}	S, B, P はDakotaとAPREPROで変更する Parameter {S}, {B}, {P} のように 中括弧でパラメータを指定すると Aprepro(or Deprepro) がパラメータを自 動で置き換える
8, {S/4}, {B} 9, {S/2}, {B} *ELEMENT,TYPE=CPS8,ELSET=BEAM 1, 1, 3, 9, 7, 2, 6, 8, 4 **ELEMENT TYPE CPS4 FLSET BEAM	Calculix V2.1 ではCPS4 が無いのでCPS8 に変更した
** 1 1 2 5 <i>A</i>	
** 2 2 3 6 5	
** 3 4 5 8 7	
** 4 5 6 9 8	
*SOLID SECTION FISET=BEAM MATERIAL=AL2024T3	
10	
*MATERIAL NAME=AL2024T3	
*FLASTIC	
30 00000e3 0 3	
*BOUNDARY	Calculix ではELSEI 指定か必要
1. 2 0.0	
3, 1, , 0.0	
6, 1, , 0.0	
9, 1, , 0.0	
*STEP	
*STATIC	
*CLOAD	
** 9, <u>2</u> , <u>3.3333333</u> ,	
9, 2, {P/2},	
*EL PRINT, POSITION=AVERAGED AT NO DES, ELSET=BEAM	
S	
*END STEP	

Dakota と各ツールとの連携⑥

• ③ Abaqus_driver(解析自動実行スクリプト)を編集

#!/bin/csh -f

\$argv[1] is params.in FROM Dakota # \$argv[2] is results.out returned to Dakota

Workdir setup for running in parallel (file_tag option turned on) # In this simple case, all templatedir would contain is fe.inp.app

#set num = `echo \$argv[1] | cut -c 11-`
#cp -r templatedir workdir.\$num
#mv \$argv[1] workdir.\$num/params.in
#cd workdir.\$num

Pre-processing

aprepro -- nowarning -q fe.inp.app fe.inp

Run ABAQUS

#rm -f *.dat *.sta
/usr/bin/ccx_2.1 -i fe
####>>&! abagus.out

Post-processing

grep ' 1 27' fe.dat | head -n 1 | awk '{print \$3}' > \$argv[2]

Results file move :and workdir cleanup for running in parallel
#mv \$argv[2] ../.
#cd ..
#rm -rf workdir.\$num

このScriptはcsh 向けに書か れているため、bsh 系は書式 を少し変える必要あり

このコマント^{*}でaprepro が各パラメータ{S}などを実際の数字に置き換えたファイルを作成する

ここをCalculix 用に編集

ここをCalculix 用に編集

Dakota と各ツールとの連携⑦

グラフ作成出力

Dakota テキスト出力結果

 FINAL OPTIMIZATION INFORMATION
 OBJ = 0.674360E+00

 DECISION VARIABLES (X-VECTOR)
 1)
 0.20000E+01
 0.30000E+01
 0.40000E+01

梁の長さを短く 厚さ(高さ)を大きく、荷重を小さくすれば応力が最小になるという、常識的な結果が得られる。

Dakota と各ツールとの連携⑧

次にOpenFOAMとの連携を検討。例題は何でも良かったのだが、TutorialのCavityFlowの例題を実施

Dakota と各ツールとの連携(9)

- Abaqus(calculix)のスクリプトインターフェース例 題をベースにファイルを編集する。編集するファ イルは以下の3つ
 - Dakota の入力ファイル(dakota_abaq_opt.in)
 ソルバインターフェーススクリプト (abaq_driver)
 OpenFOAMの入力ファイルをベーステンプレートファイルとして編集。
 (今回は境界速度をパラメータにしているので、 0/しをテンプレートとして編集する)

Dakota と各ツールとの連携①

Dakota の入力ファイル(dakota_abaq_opt.in)

strategy,

single_method graphics,tabular_graphics_data method, conmin_frcg max_iterations = 100 convergence_tolerance = 1e-4

#method, #dot mmfd

variables,

continuous_design = 1
cdv_initial_point = 1.0
cdv_lower_bounds = 0.5
cdv_upper_bounds = 2.0
cdv_descriptor = 'U'

interface,

system #asynch evaluation_concurrency = 5
analysis_driver = 'abaq_driver'
parameters_file = 'params.in'
results_file = 'results.out'
aprepro

responses,

num_objective_functions = 1
numerical_gradients
method_source dakota
interval_type central
fd_step_size = .01
no_hessians

設計変数は1つU 初期値は1 最小値は0.5 最大値は2.0

グラフデータを出力するように指定

Dakotaと各ツールとの連携①

• ソルバインターフェーススクリプト(abaq_driver)

#!/bin/csh –f
\$argv[1] is params.in FROM Dakota
\$argv[2] is results.out returned to Dakota

mkdir work cp -r ./0 ./work/. cp -r ./constant ./work/. cp -r ./system ./work/. mv \$argv[1] ./work/0/params.in cd ./work/0

Pre-processing dprepro params.in U.temp U #cat U-1 U-2 U-3 > U

#run OpenFOAM
cd ..
blockMesh
icoFoam

Post-processing
cd 0.5
more +381 U | head -n 1 | awk '{print \$2}' > \$argv[2]

Results file move :and workdir cleanup for running in parallel
mv \$argv[2] ../.
cd ..
mv \$argv[2] ../.
cd ..
rm -r ./work

Work directory にOpenFOAM の入力ファイルをコピーする

Dakota のプリプログラム **Deprepro** にて OpenFOAM 速度ファイルU の一部を自動で入れ替える設定をす る(Calculix の時使ったAprepro はOpenFOAMでは正 常に動かなかった)

	type value	fixedValue; uniform ({U} 0 0);	
ar	allel	Ļ	
	type value	fixedValue; uniform (<mark>1</mark> 0 0);	

Dakota と各ツールとの連携(12)

- 計算結果
 FINAL OPTIMIZATION INFORMATION OBJ = -0.769003E+00
 DECISION VARIABLES (X-VECTOR)
 1) 0.20000E+01
- 境界速度を 2m/s で内部Y方向流速の最小値 (最大値)は-0.769m/s が得られる。

%eval_id	U	obj_fn	
1	1	-0.36861	
2	1.095793	-0.40562	
3	1.478966	-0.55656	
4	2	-0.769	
5	1.999999	-0.769	
6	1.999999	-0.769	
7	2	-0.769	

Dakota と各ツールとの連携14

Dakota の入力ファイル(dakota_abaq_opt.in) ファイル中身

Dakotaと各ツールとの連携15

ソルバインターフェーススクリプト(abaq_driver)

Dakotaと各ツールとの連携16

blockMeshDict の template file 中身

Dakotaと各ツールとの連携① しばらく計算すると以下の結果が得られる。

GUIツール: Jaguar について -Jaguar とは: Dakota 専用のGUI tool -JAVAにて書かれている ある程度 input file 作成をSupportする。 結果の分析機能もあるようだが未確認

🙀 Jaguar - C:¥docs¥caetools¥Dakota_5_2¥Dakota¥examples¥tutorial¥dakota_rosenbrock_2d.in - Jaguar			
Eile Edit Window Help			
🗱 dakota_rosenbrock_2d.in 🖂	- 0)	🗄 Outline 🖾 👘 🗖	
Edit Window Help dakota_rosenbrock_2d.in \boxtimes 1 2 ## DAKOTA INPUT FILE - dakota_rosenbrock_2d.in 3 4 5 strategy, 6 single_method 7 graphics,tabular_graphics_data 8 9 method, 10 multidim_parameter_study 11 partitions = 8 8 12 13 model, 14 single 15 16 variables, 17 continuous_design = 2 18 lower_bounds -2.0 -2.0		<pre> Dutline X Strategy (strategy) Strategy (str</pre>	
20 descriptors 'x1' "x2" 21 22 interface, 23 direct * Source ① Define Problem ▶② Define Flow/Iteration ▶③ Execute Problem ▶④ Visualize Results © Console ⊠ Jaguar Console Referencing internal dakota.input.desc and dakota.input.nspec	*	 analysis_onvers analysis_onvers responses (responses) ano_gradients ano_hessians 	
	+	4 <u> </u>	

GUIツール:Jaguarを使って入力ファイルを編集してみる①

Jaguar を起動し、dakota_abaq_opt.inを読み込む

-Method を切り替えてみる

GUIツール:Jaguarを使って入力ファイルを編集してみる②

<u>File Edit Window H</u> elp					
🎇 *dakota_abaq_opt.in 🛛			🗆 🗋 📴 Outline 🕱 👘 🗖		
Define Flow/Iteration			Strategy (strategy)		
Sections 🕞 🕀	Output verbosity		Graphics flag Tabulation of graphics		
type filter text	Details not availab Maximum iterations	- 番下行で現在のMethodが	Method (method)		
METHOD	Maximum function eva Pa	<u>arameter Study</u> に設定されて を確認	Partitions per varial Variables (variables)		
Multidimension	Convergence tolerance	Optional Rea. Default value: 0.0	Lower bounds Upper bounds		
	Constraint tolerance	Optional Real. Default value: 0.0	Descriptors		
	 Scaling flag Final solutions 	aptional Integer. Hinkmum value: 0, Default value: 1	Analysis drivers System call interfac		
۰ <u>س</u> ۲	Details:	Parameter Studies + M	Parameters file ultidimens Results file nam Aprepro parame		
Source ① Define Problem 》② Define	Responses (responses) Responses gradients				
Console Method source Auguar Console					
interval_type central fd_step_size = 0.01 no hessians					
Dakreord completed ok DAKOTA detected possible iss	ue(s) in the input deck. Howev	ver, JAGUAR will attempt to continue. Some er	rors		
< [III.		• III • •		

GUIツール:Jaguarを使って入力ファイルを編集してみる③

このTag を選択すると他の手法に切り替えられる。 ここではDACE (design and analysis of computer experiments 計算機支援実験計画法) に切り替える

Element	Options	*	
Optimization: Global	5		
Optimization: Local, Derivative-based	14		•Central Composite Design
undefined	4		 Box-Behnken Design
Parameter Studies	4		Orthogonal Array Designs
Optimization: Local. Derivative-free	5		• Grid Design
Neplinear Least Courres	-	E	 Monte Carlo Design
Nonlinear Least Squares	3		• LHS Design
Uncertainty Quantification	10		• OA-LHS Design
Optimization: Plug-in	1		
DACE	4	Ţ	
			CCD: Central Composite Design を設定する

%eval_id	Х	Y	obj_fn
1	1.25	1.25	-0.37245
2	0.5	1.25	-0.21946
3	2	1.25	-0.31724
4	1.25	0.5	-0.20699
5	1.25	2	-0.33235
6	0.5	0.5	-0.36073
7	2	0.5	0.596946
8	0.5	2	-4.51749
9	2	2	-0.38354

OpenMDAOとは?

・Dakotaと同様に自動的に解析に入力するパラメータを変更したパラメータSTUDYや 目的となる指標(目的関数)を与えると自動的にそのような目的の値になるようなパ ラメータを見つけてくれるツール。Python で記述される。

・関西勉強会にて片山さんが資料をアップしていたので自分のUbuntu12.4LTSに インストールしてみた

- http://openmdao.org/

Driver

Workflow

OpenMDAOインストールメモ

- インストールメモ
 基本的には片山さんが関西の勉強会
 - 2013/8/3の資料にアップしているやりかたにて問題なし。。。。
 - http://openmdao.org/
- go-openmdao.py を上記HOMEページからDownloadして、端末から実行するだけ abc\$ python go-openmdao.py
- 上記 Python script は インストラーで本体は入っていない。ネットワークからダウンロードしつつインストールするので、ネット接続した状態で実行する必要がある。
- 私の環境では、python-scipy が無いよ!と怒られたので、 これのみ追加インストールした abc\$ sudo apt-get install python-scipy
- Python がInstall されていればWindows にもそのままイン ストール可能の模様だが、未確認

OpenMDAOテストメモ(1)

- .bin/activate にて仮想環境(virtualenv)に入る。 この仮想環境はどういう意味があるのか不明であるが、ともかくそういうものらしい
- (openmdao-0.9.5)dexcs@dexcs-laptop:~/openmdao-0.9.5\$ openmdao test プロンプトが変わって仮想環境に入ったことが確認できる。 テストコマンドを実行
- テストが無事終了すると "Ran 813 tests in 124.134" のメッセージが表示

まとめ

•Dakotaのv5.4機能について調査
•DakotaとCalculix/OpenFOAMの連携について簡単な例題を紹介
•Dakota GUI Jaguarを使ってMethodの入れ替えの例を提示
•OpenMDAOのインストールについて調査
•今後、DakotaとOpenMDAOの比較を実施予定